CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
The
NP/N
dog
N
NP
>
0
fell
(S[dcl]\NP)/(S[adj]\NP)
asleep
S[adj]\NP
S[dcl]\NP
>
0
on
((S\NP)\(S\NP))/NP
top
N/PP
of
PP/NP
the
NP/N
blanket
N
NP
>
0
PP
>
0
N
>
0
NP
*
(S\NP)\(S\NP)
>
0
S[dcl]\NP
<
0
S[dcl]
<
0
.
.
S[dcl]
.
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="The" data-from="0" data-to="3" data-cat="NP/N"> <tr><td class="token">The</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="dog" data-from="4" data-to="7" data-cat="N"> <tr><td class="token">dog</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="fell" data-from="8" data-to="12" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr><td class="token">fell</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="asleep" data-from="13" data-to="19" data-cat="S[adj]\NP"> <tr><td class="token">asleep</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="on" data-from="20" data-to="22" data-cat="((S\NP)\(S\NP))/NP"> <tr><td class="token">on</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="top" data-from="23" data-to="26" data-cat="N/PP"> <tr><td class="token">top</td></tr> <tr><td class="cat" tabindex="0">N/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="of" data-from="27" data-to="29" data-cat="PP/NP"> <tr><td class="token">of</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="the" data-from="30" data-to="33" data-cat="NP/N"> <tr><td class="token">the</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="blanket" data-from="34" data-to="41" data-cat="N"> <tr><td class="token">blanket</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="41" data-to="42" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm18}{The}{\catNP/\catN}{} \& \lexnode*{idm28}{dog}{\catN}{} \& \lexnode*{idm50}{fell}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm64}{asleep}{\catS[adj]\?\catNP}{} \& \lexnode*{idm85}{on}{((\catS\?\catNP)\?(\catS\?\catNP))/\catNP}{} \& \lexnode*{idm109}{top}{\catN/\catPP}{} \& \lexnode*{idm124}{of}{\catPP/\catNP}{} \& \lexnode*{idm139}{the}{\catNP/\catN}{} \& \lexnode*{idm149}{blanket}{\catN}{} \& \lexnode*{idm157}{.}{\cat.}{} \\ }; \binnode*{idm13}{idm18-cat}{idm28-cat}{\FC{0}}{\catNP}{} \binnode*{idm43}{idm50-cat}{idm64-cat}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm134}{idm139-cat}{idm149-cat}{\FC{0}}{\catNP}{} \binnode*{idm119}{idm124-cat}{idm134}{\FC{0}}{\catPP}{} \binnode*{idm104}{idm109-cat}{idm119}{\FC{0}}{\catN}{} \unnode*{idm101}{idm104}{*}{\catNP}{} \binnode*{idm74}{idm85-cat}{idm101}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm36}{idm43}{idm74}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13}{idm36}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm157-cat}{.}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Der Hund ist auf der Decke eingeschlafen.
ell
Ο σκύλος κοιμήθηκε πάνω στη κουβέρτα.
ell
Το σκυλί κοιμήθηκε πάνω στη κουβέρτα.
ell
Ο σκύλος αποκοιμήθηκε πάνω στη κουβέρτα.
ell
Το σκυλί αποκοιμήθηκε πάνω στη κουβέρτα.
fra
Le chien a dormi sur le tapis.
ita
Il cane si addormentò in cima alla coperta.
ita
Il cane si è addormentato in cima alla coperta.
nld
De hond viel in slaap op het deken.