CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
They
NP
are
(S[dcl]\NP)/(S[ng]\NP)
not
(S\NP)\(S\NP)
(S[dcl]\NP)/(S[ng]\NP)
<
1
×
coming
S[ng]\NP
even
((S\NP)\(S\NP))/((S\NP)\(S\NP))
if
((S\NP)\(S\NP))/S[dcl]
they
NP
can
S[dcl]\NP
S[dcl]
<
0
.
.
S[dcl]
.
(S\NP)\(S\NP)
>
0
(S\NP)\(S\NP)
>
0
S[ng]\NP
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="They" data-from="0" data-to="4" data-cat="NP"> <tr><td class="token">They</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[ng]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="are" data-from="5" data-to="8" data-cat="(S[dcl]\NP)/(S[ng]\NP)"> <tr><td class="token">are</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[ng]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="not" data-from="9" data-to="12" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">not</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[ng]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[ng]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="coming" data-from="13" data-to="19" data-cat="S[ng]\NP"> <tr><td class="token">coming</td></tr> <tr><td class="cat" tabindex="0">S[ng]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="even" data-from="20" data-to="24" data-cat="((S\NP)\(S\NP))/((S\NP)\(S\NP))"> <tr><td class="token">even</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/((S\NP)\(S\NP))</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="if" data-from="25" data-to="27" data-cat="((S\NP)\(S\NP))/S[dcl]"> <tr><td class="token">if</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="they" data-from="28" data-to="32" data-cat="NP"> <tr><td class="token">they</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="can" data-from="33" data-to="36" data-cat="S[dcl]\NP"> <tr><td class="token">can</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="36" data-to="37" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[ng]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{They}{\catNP}{} \& \lexnode*{idm34}{are}{(\catS[dcl]\?\catNP)/(\catS[ng]\?\catNP)}{} \& \lexnode*{idm48}{not}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm69}{coming}{\catS[ng]\?\catNP}{} \& \lexnode*{idm90}{even}{((\catS\?\catNP)\?(\catS\?\catNP))/((\catS\?\catNP)\?(\catS\?\catNP))}{} \& \lexnode*{idm123}{if}{((\catS\?\catNP)\?(\catS\?\catNP))/\catS[dcl]}{} \& \lexnode*{idm149}{they}{\catNP}{} \& \lexnode*{idm157}{can}{\catS[dcl]\?\catNP}{} \& \lexnode*{idm167}{.}{\cat.}{} \\ }; \binnode*{idm23}{idm34-cat}{idm48-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[ng]\?\catNP)}{} \binnode*{idm144}{idm149-cat}{idm157-cat}{\BC{0}}{\catS[dcl]}{} \binnode*{idm139}{idm144}{idm167-cat}{.}{\catS[dcl]}{} \binnode*{idm112}{idm123-cat}{idm139}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm79}{idm90-cat}{idm112}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm62}{idm69-cat}{idm79}{\BC{0}}{\catS[ng]\?\catNP}{} \binnode*{idm16}{idm23}{idm62}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Sie werden nicht kommen, selbst wenn sie es könnten.
ell
Δεν θα έρθουν ακόμη και αν μπορέσουν.
fra
Ils ne viennent pas, même s'ils le peuvent.
ita
Non vengono anche se possono.
por
Eles não vêm, mesmo que possam.
rus
Они не придут, даже если смогут.
spa
No vienen aunque puedan.