CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
This
NP/N
book
N
NP
>
0
is
(S[dcl]\NP)/(S[adj]\NP)
too
(S[adj]\NP)/(S[adj]\NP)
difficult
S[adj]\NP
S[adj]\NP
>
0
S[dcl]\NP
>
0
for
(((S\NP)\(S\NP))/(S[to]\NP))/NP
me
NP
((S\NP)\(S\NP))/(S[to]\NP)
>
0
to
(S[to]\NP)/(S[b]\NP)
read
S[b]\NP
.
.
S[b]\NP
.
S[to]\NP
>
0
(S\NP)\(S\NP)
>
0
S[dcl]\NP
<
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="This" data-from="0" data-to="4" data-cat="NP/N"> <tr><td class="token">This</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="book" data-from="5" data-to="9" data-cat="N"> <tr><td class="token">book</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="is" data-from="10" data-to="12" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr><td class="token">is</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="too" data-from="13" data-to="16" data-cat="(S[adj]\NP)/(S[adj]\NP)"> <tr><td class="token">too</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="difficult" data-from="17" data-to="26" data-cat="S[adj]\NP"> <tr><td class="token">difficult</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="((S\NP)\(S\NP))/(S[to]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="for" data-from="27" data-to="30" data-cat="(((S\NP)\(S\NP))/(S[to]\NP))/NP"> <tr><td class="token">for</td></tr> <tr><td class="cat" tabindex="0">(((S\NP)\(S\NP))/(S[to]\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="me" data-from="31" data-to="33" data-cat="NP"> <tr><td class="token">me</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">((S\NP)\(S\NP))/(S[to]\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="34" data-to="36" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="read" data-from="37" data-to="41" data-cat="S[b]\NP"> <tr><td class="token">read</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="41" data-to="42" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{This}{\catNP/\catN}{} \& \lexnode*{idm23}{book}{\catN}{} \& \lexnode*{idm45}{is}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm66}{too}{(\catS[adj]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm80}{difficult}{\catS[adj]\?\catNP}{} \& \lexnode*{idm116}{for}{(((\catS\?\catNP)\?(\catS\?\catNP))/(\catS[to]\?\catNP))/\catNP}{} \& \lexnode*{idm136}{me}{\catNP}{} \& \lexnode*{idm151}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm172}{read}{\catS[b]\?\catNP}{} \& \lexnode*{idm182}{.}{\cat.}{} \\ }; \binnode*{idm8}{idm13-cat}{idm23-cat}{\FC{0}}{\catNP}{} \binnode*{idm59}{idm66-cat}{idm80-cat}{\FC{0}}{\catS[adj]\?\catNP}{} \binnode*{idm38}{idm45-cat}{idm59}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm101}{idm116-cat}{idm136-cat}{\FC{0}}{((\catS\?\catNP)\?(\catS\?\catNP))/(\catS[to]\?\catNP)}{} \binnode*{idm165}{idm172-cat}{idm182-cat}{.}{\catS[b]\?\catNP}{} \binnode*{idm144}{idm151-cat}{idm165}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm90}{idm101}{idm144}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm31}{idm38}{idm90}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8}{idm31}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Dieses Buch ist zu schwierig, als dass ich’s lesen könnte.
deu
Dieses Buch ist für mich zu schwierig zu lesen.
deu
Dieses Buch ist für mich unlesbar schwierig.
fra
Ce livre est tellement dur, je ne peux pas le lire.
ita
Questo libro è così difficile, non riesco a leggerlo.
ita
Questo libro è troppo difficile da leggere per me.
ita
Questo libro è troppo difficile per me da leggere.
nld
Dit boek is te moeilijk voor mij om te lezen.
spa
Este libro es demasiado difícil para que yo lo lea.