CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Tom
N
NP
*
and
conj
only
N/N
Tom
N
N
>
0
NP
*
NP\NP
∨
NP
<
0
can
(S[dcl]\NP)/(S[b]\NP)
do
(S[b]\NP)/NP
it
NP
S[b]\NP
>
0
S[dcl]\NP
>
0
.
.
S[dcl]\NP
.
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="Tom" data-from="0" data-to="3" data-cat="N"> <tr><td class="token">Tom</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="and" data-from="4" data-to="7" data-cat="conj"> <tr><td class="token">and</td></tr> <tr><td class="cat" tabindex="0">conj</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="only" data-from="8" data-to="12" data-cat="N/N"> <tr><td class="token">only</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="Tom" data-from="13" data-to="16" data-cat="N"> <tr><td class="token">Tom</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP\NP</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="can" data-from="17" data-to="20" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">can</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="do" data-from="21" data-to="23" data-cat="(S[b]\NP)/NP"> <tr><td class="token">do</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="it" data-from="24" data-to="26" data-cat="NP"> <tr><td class="token">it</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="26" data-to="27" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm16}{Tom}{\catN}{} \& \lexnode*{idm31}{and}{\catconj}{} \& \lexnode*{idm47}{only}{\catN/\catN}{} \& \lexnode*{idm57}{Tom}{\catN}{} \& \lexnode*{idm79}{can}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm100}{do}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm112}{it}{\catNP}{} \& \lexnode*{idm120}{.}{\cat.}{} \\ }; \unnode*{idm13}{idm16-cat}{*}{\catNP}{} \binnode*{idm42}{idm47-cat}{idm57-cat}{\FC{0}}{\catN}{} \unnode*{idm39}{idm42}{*}{\catNP}{} \binnode*{idm24}{idm31-cat}{idm39}{\wedge}{\catNP\?\catNP}{} \binnode*{idm8}{idm13}{idm24}{\BC{0}}{\catNP}{} \binnode*{idm93}{idm100-cat}{idm112-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm72}{idm79-cat}{idm93}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm65}{idm72}{idm120-cat}{.}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8}{idm65}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
fra
Tom et seulement Tom peut le faire.
ita
Tom e soltanto Tom può farlo.
ita
Tom e solamente Tom può farlo.
ita
Tom e solo Tom può farlo.
por
Tom e somente Tom pode fazer isso.
rus
Том единственный, кто может сделать это.
rus
Том, и только Том, может сделать это!
spa
Tom y tan sólo Tom puede hacerlo.