CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Previous
Next
Parse
auto
visual
HTML
LaTeX
Tom
N
NP
*
knows
(S[dcl]\NP)/S[dcl]
you
NP
'll
(S[dcl]\NP)/(S[b]\NP)
never
(S\NP)\(S\NP)
(S[dcl]\NP)/(S[b]\NP)
<
1
×
forgive
(S[b]\NP)/NP
him
NP
S[b]\NP
>
0
.
.
S[b]\NP
.
S[dcl]\NP
>
0
S[dcl]
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="Tom" data-from="0" data-to="3" data-cat="N"> <tr><td class="token">Tom</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="knows" data-from="4" data-to="9" data-cat="(S[dcl]\NP)/S[dcl]"> <tr><td class="token">knows</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="you" data-from="10" data-to="13" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'ll" data-from="13" data-to="16" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">'ll</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="never" data-from="17" data-to="22" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">never</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[b]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="forgive" data-from="23" data-to="30" data-cat="(S[b]\NP)/NP"> <tr><td class="token">forgive</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="him" data-from="31" data-to="34" data-cat="NP"> <tr><td class="token">him</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="34" data-to="35" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm11}{Tom}{\catN}{} \& \lexnode*{idm26}{knows}{(\catS[dcl]\?\catNP)/\catS[dcl]}{} \& \lexnode*{idm43}{you}{\catNP}{} \& \lexnode*{idm69}{'ll}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm83}{never}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm111}{forgive}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm123}{him}{\catNP}{} \& \lexnode*{idm131}{.}{\cat.}{} \\ }; \unnode*{idm8}{idm11-cat}{*}{\catNP}{} \binnode*{idm58}{idm69-cat}{idm83-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \binnode*{idm104}{idm111-cat}{idm123-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm97}{idm104}{idm131-cat}{.}{\catS[b]\?\catNP}{} \binnode*{idm51}{idm58}{idm97}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm38}{idm43-cat}{idm51}{\BC{0}}{\catS[dcl]}{} \binnode*{idm19}{idm26-cat}{idm38}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8}{idm19}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
eng
Tom knows that you'll never forgive him.
nld
Tom weet dat je hem nooit zal vergeven.
rus
Том знает, что ты его никогда не простишь.
rus
Том знает, что вы никогда его не простите.
rus
Том знает, что ты никогда его не простишь.
rus
Том знает, что вы его никогда не простите.
ukr
Том знає, що ти йому ніколи не пробачиш.
ukr
Том знає, що ви йому ніколи не пробачите.