CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
We
NP
need
(S[dcl]\NP)/(S[to]\NP)
to
(S[to]\NP)/(S[b]\NP)
look
(S[b]\NP)/PP
for
PP/NP
a
NP/N
gas
N/N
station
N
N
>
0
NP
>
0
PP
>
0
S[b]\NP
>
0
S[to]\NP
>
0
S[dcl]\NP
>
0
because
((S\NP)\(S\NP))/S[dcl]
this
NP/N
car
N
NP
>
0
will
(S[dcl]\NP)/(S[b]\NP)
soon
(S\NP)\(S\NP)
(S[dcl]\NP)/(S[b]\NP)
<
1
×
run
S[b]\NP
out
((S\NP)\(S\NP))/PP
of
PP/NP
gas
N
NP
*
PP
>
0
(S\NP)\(S\NP)
>
0
S[b]\NP
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
(S\NP)\(S\NP)
>
0
S[dcl]\NP
<
0
S[dcl]
<
0
.
.
S[dcl]
.
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="We" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">We</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="need" data-from="3" data-to="7" data-cat="(S[dcl]\NP)/(S[to]\NP)"> <tr><td class="token">need</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="8" data-to="10" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="look" data-from="11" data-to="15" data-cat="(S[b]\NP)/PP"> <tr><td class="token">look</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="for" data-from="16" data-to="19" data-cat="PP/NP"> <tr><td class="token">for</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="a" data-from="20" data-to="21" data-cat="NP/N"> <tr><td class="token">a</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="gas" data-from="22" data-to="25" data-cat="N/N"> <tr><td class="token">gas</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="station" data-from="26" data-to="33" data-cat="N"> <tr><td class="token">station</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="because" data-from="34" data-to="41" data-cat="((S\NP)\(S\NP))/S[dcl]"> <tr><td class="token">because</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="this" data-from="42" data-to="46" data-cat="NP/N"> <tr><td class="token">this</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="car" data-from="47" data-to="50" data-cat="N"> <tr><td class="token">car</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="will" data-from="51" data-to="55" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">will</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="soon" data-from="56" data-to="60" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">soon</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[b]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="run" data-from="61" data-to="64" data-cat="S[b]\NP"> <tr><td class="token">run</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="out" data-from="65" data-to="68" data-cat="((S\NP)\(S\NP))/PP"> <tr><td class="token">out</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="of" data-from="69" data-to="71" data-cat="PP/NP"> <tr><td class="token">of</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="gas" data-from="72" data-to="75" data-cat="N"> <tr><td class="token">gas</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="75" data-to="76" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{We}{\catNP}{} \& \lexnode*{idm35}{need}{(\catS[dcl]\?\catNP)/(\catS[to]\?\catNP)}{} \& \lexnode*{idm56}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm77}{look}{(\catS[b]\?\catNP)/\catPP}{} \& \lexnode*{idm94}{for}{\catPP/\catNP}{} \& \lexnode*{idm109}{a}{\catNP/\catN}{} \& \lexnode*{idm124}{gas}{\catN/\catN}{} \& \lexnode*{idm134}{station}{\catN}{} \& \lexnode*{idm153}{because}{((\catS\?\catNP)\?(\catS\?\catNP))/\catS[dcl]}{} \& \lexnode*{idm179}{this}{\catNP/\catN}{} \& \lexnode*{idm189}{car}{\catN}{} \& \lexnode*{idm215}{will}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm229}{soon}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm250}{run}{\catS[b]\?\catNP}{} \& \lexnode*{idm271}{out}{((\catS\?\catNP)\?(\catS\?\catNP))/\catPP}{} \& \lexnode*{idm292}{of}{\catPP/\catNP}{} \& \lexnode*{idm305}{gas}{\catN}{} \& \lexnode*{idm313}{.}{\cat.}{} \\ }; \binnode*{idm119}{idm124-cat}{idm134-cat}{\FC{0}}{\catN}{} \binnode*{idm104}{idm109-cat}{idm119}{\FC{0}}{\catNP}{} \binnode*{idm89}{idm94-cat}{idm104}{\FC{0}}{\catPP}{} \binnode*{idm70}{idm77-cat}{idm89}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm49}{idm56-cat}{idm70}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm28}{idm35-cat}{idm49}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm174}{idm179-cat}{idm189-cat}{\FC{0}}{\catNP}{} \binnode*{idm204}{idm215-cat}{idm229-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \unnode*{idm302}{idm305-cat}{*}{\catNP}{} \binnode*{idm287}{idm292-cat}{idm302}{\FC{0}}{\catPP}{} \binnode*{idm260}{idm271-cat}{idm287}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm243}{idm250-cat}{idm260}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm197}{idm204}{idm243}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm169}{idm174}{idm197}{\BC{0}}{\catS[dcl]}{} \binnode*{idm142}{idm153-cat}{idm169}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm21}{idm28}{idm142}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm313-cat}{.}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Wir müssen uns nach einer Tankstelle umsehen, weil dieses Auto bald kein Benzin mehr im Tank hat.
nld
We moeten een tankstation vinden omdat deze auto binnenkort geen benzine meer zal hebben.
por
Nós precisamos procurar por uma estação de gás porque esse carro vai ficar sem gasolina em breve.
rus
Нам нужно искать заправку, потому что в машине скоро кончится бензин.
spa
Debemos encontrar una gasolinera porque dentro de poco este auto se quedará sin bencina.