CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
What
S[wq]/(S[q]/NP)
are
(S[q]/(S[ng]\NP))/NP
you
NP
S[q]/(S[ng]\NP)
>
0
going
(S[ng]\NP)/(S[to]\NP)
to
(S[to]\NP)/(S[b]\NP)
do
(S[b]\NP)/NP
tomorrow
(S\NP)\(S\NP)
?
.
(S\NP)\(S\NP)
.
(S[b]\NP)/NP
<
1
×
(S[to]\NP)/NP
>
1
(S[ng]\NP)/NP
>
1
S[q]/NP
>
1
S[wq]
>
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[wq]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="What" data-from="0" data-to="4" data-cat="S[wq]/(S[q]/NP)"> <tr><td class="token">What</td></tr> <tr><td class="cat" tabindex="0">S[wq]/(S[q]/NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[q]/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[q]/(S[ng]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="are" data-from="5" data-to="8" data-cat="(S[q]/(S[ng]\NP))/NP"> <tr><td class="token">are</td></tr> <tr><td class="cat" tabindex="0">(S[q]/(S[ng]\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="you" data-from="9" data-to="12" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[q]/(S[ng]\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[ng]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="going" data-from="13" data-to="18" data-cat="(S[ng]\NP)/(S[to]\NP)"> <tr><td class="token">going</td></tr> <tr><td class="cat" tabindex="0">(S[ng]\NP)/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[to]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="19" data-to="21" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[b]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="do" data-from="22" data-to="24" data-cat="(S[b]\NP)/NP"> <tr><td class="token">do</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="tomorrow" data-from="25" data-to="33" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">tomorrow</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="?" data-from="33" data-to="34" data-cat="."> <tr><td class="token">?</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/NP</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[to]\NP)/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[ng]\NP)/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[q]/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[wq]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{What}{\catS[wq]/(\catS[q]/\catNP)}{} \& \lexnode*{idm36}{are}{(\catS[q]/(\catS[ng]\?\catNP))/\catNP}{} \& \lexnode*{idm50}{you}{\catNP}{} \& \lexnode*{idm67}{going}{(\catS[ng]\?\catNP)/(\catS[to]\?\catNP)}{} \& \lexnode*{idm90}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm113}{do}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm136}{tomorrow}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm150}{?}{\cat.}{} \\ }; \binnode*{idm27}{idm36-cat}{idm50-cat}{\FC{0}}{\catS[q]/(\catS[ng]\?\catNP)}{} \binnode*{idm125}{idm136-cat}{idm150-cat}{.}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm104}{idm113-cat}{idm125}{\BXC{1}}{(\catS[b]\?\catNP)/\catNP}{} \binnode*{idm81}{idm90-cat}{idm104}{\FC{1}}{(\catS[to]\?\catNP)/\catNP}{} \binnode*{idm58}{idm67-cat}{idm81}{\FC{1}}{(\catS[ng]\?\catNP)/\catNP}{} \binnode*{idm20}{idm27}{idm58}{\FC{1}}{\catS[q]/\catNP}{} \binnode*{idm3}{idm8-cat}{idm20}{\FC{0}}{\catS[wq]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Was hast du morgen vor?
deu
Was wirst du morgen machen?
fra
Que vas-tu faire demain ?
fra
Qu'allez-vous faire demain?
rus
Что вы собираетесь сделать завтра?
rus
Что вы собираетесь делать завтра?
ukr
Що ти завтра робитимеш?