CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
You
NP
've
(S[dcl]\NP)/(S[pt]\NP)
got
(S[pt]\NP)/(S[to]\NP)
to
(S[to]\NP)/(S[b]\NP)
be
(S[b]\NP)/(S[ng]\NP)
kidding
S[ng]\NP
!
.
S[ng]\NP
.
S[b]\NP
>
0
S[to]\NP
>
0
S[pt]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="You" data-from="0" data-to="3" data-cat="NP"> <tr><td class="token">You</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'ve" data-from="3" data-to="6" data-cat="(S[dcl]\NP)/(S[pt]\NP)"> <tr><td class="token">'ve</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[pt]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[pt]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="got" data-from="7" data-to="10" data-cat="(S[pt]\NP)/(S[to]\NP)"> <tr><td class="token">got</td></tr> <tr><td class="cat" tabindex="0">(S[pt]\NP)/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="11" data-to="13" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="be" data-from="14" data-to="16" data-cat="(S[b]\NP)/(S[ng]\NP)"> <tr><td class="token">be</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/(S[ng]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[ng]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="kidding" data-from="17" data-to="24" data-cat="S[ng]\NP"> <tr><td class="token">kidding</td></tr> <tr><td class="cat" tabindex="0">S[ng]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="!" data-from="24" data-to="25" data-cat="."> <tr><td class="token">!</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[ng]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[pt]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{You}{\catNP}{} \& \lexnode*{idm23}{'ve}{(\catS[dcl]\?\catNP)/(\catS[pt]\?\catNP)}{} \& \lexnode*{idm44}{got}{(\catS[pt]\?\catNP)/(\catS[to]\?\catNP)}{} \& \lexnode*{idm65}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm86}{be}{(\catS[b]\?\catNP)/(\catS[ng]\?\catNP)}{} \& \lexnode*{idm107}{kidding}{\catS[ng]\?\catNP}{} \& \lexnode*{idm117}{!}{\cat.}{} \\ }; \binnode*{idm100}{idm107-cat}{idm117-cat}{.}{\catS[ng]\?\catNP}{} \binnode*{idm79}{idm86-cat}{idm100}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm58}{idm65-cat}{idm79}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm37}{idm44-cat}{idm58}{\FC{0}}{\catS[pt]\?\catNP}{} \binnode*{idm16}{idm23-cat}{idm37}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Das kann doch nur ein Witz sein!
eng
You've got to be kidding.
eng
You've gotta be kidding!
fra
Vous devez plaisanter !
fra
Tu dois plaisanter !
por
Só pode ser piada!
por
Você deve estar brincando.
por
Você tem de estar brincando.
rus
Ты, наверное, шутишь!
rus
Да ты небось шутишь!
spa
¡Tienes que estar bromeando!
spa
Tienes que estar bromeando.