CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
You
NP
can
(S[dcl]\NP)/(S[b]\NP)
do
(S[b]\NP)/NP
it
NP
(S[X]\NP)\((S[X]\NP)/NP)
T
<
,
,
ca
(S[dcl]\NP)/(S[b]\NP)
n't
(S\NP)\(S\NP)
(S[dcl]\NP)/(S[b]\NP)
<
1
×
you
NP
?
.
NP
.
(S[X]\NP)\((S[X]\NP)/NP)
T
<
(S[dcl]\NP)\((S[b]\NP)/NP)
>
1
×
((S[dcl]\NP)\((S[b]\NP)/NP))\((S[dcl]\NP)\((S[b]\NP)/NP))
∨
(S[b]\NP)\((S[b]\NP)/NP)
<
0
S[b]\NP
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="You" data-from="0" data-to="3" data-cat="NP"> <tr><td class="token">You</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="can" data-from="4" data-to="7" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">can</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="do" data-from="8" data-to="10" data-cat="(S[b]\NP)/NP"> <tr><td class="token">do</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[b]\NP)\((S[b]\NP)/NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="(S[X]\NP)\((S[X]\NP)/NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="it" data-from="11" data-to="13" data-cat="NP"> <tr><td class="token">it</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">(S[X]\NP)\((S[X]\NP)/NP)</div> <div class="rule" title="Backward Type Raising"> T <sup><</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="((S[dcl]\NP)\((S[b]\NP)/NP))\((S[dcl]\NP)\((S[b]\NP)/NP))"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="," data-from="13" data-to="14" data-cat=","> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">,</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)\((S[b]\NP)/NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="ca" data-from="15" data-to="17" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">ca</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="n't" data-from="17" data-to="20" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">n't</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[b]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="(S[X]\NP)\((S[X]\NP)/NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="you" data-from="21" data-to="24" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="?" data-from="24" data-to="25" data-cat="."> <tr><td class="token">?</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">(S[X]\NP)\((S[X]\NP)/NP)</div> <div class="rule" title="Backward Type Raising"> T <sup><</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)\((S[b]\NP)/NP)</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">((S[dcl]\NP)\((S[b]\NP)/NP))\((S[dcl]\NP)\((S[b]\NP)/NP))</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)\((S[b]\NP)/NP)</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{You}{\catNP}{} \& \lexnode*{idm23}{can}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm44}{do}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm80}{it}{\catNP}{} \& \lexnode*{idm111}{,}{\cat,}{} \& \lexnode*{idm143}{ca}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm157}{n't}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm187}{you}{\catNP}{} \& \lexnode*{idm195}{?}{\cat.}{} \\ }; \unnode*{idm69}{idm80-cat}{*}{(\catS[X]\?\catNP)\?((\catS[X]\?\catNP)/\catNP)}{} \binnode*{idm132}{idm143-cat}{idm157-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \binnode*{idm182}{idm187-cat}{idm195-cat}{.}{\catNP}{} \unnode*{idm171}{idm182}{*}{(\catS[X]\?\catNP)\?((\catS[X]\?\catNP)/\catNP)}{} \binnode*{idm119}{idm132}{idm171}{\FXC{1}}{(\catS[dcl]\?\catNP)\?((\catS[b]\?\catNP)/\catNP)}{} \binnode*{idm88}{idm111-cat}{idm119}{\wedge}{((\catS[dcl]\?\catNP)\?((\catS[b]\?\catNP)/\catNP))\?((\catS[dcl]\?\catNP)\?((\catS[b]\?\catNP)/\catNP))}{} \binnode*{idm56}{idm69}{idm88}{\BC{0}}{(\catS[b]\?\catNP)\?((\catS[b]\?\catNP)/\catNP)}{} \binnode*{idm37}{idm44-cat}{idm56}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm16}{idm23-cat}{idm37}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Du kannst das doch, oder?
deu
Du kannst das, nicht wahr?
fra
Tu peux le faire, n'est-ce pas ?
ita
Voi potete farla, vero?
ita
Riesce a farlo, vero?
ita
Riesce a farla, vero?
ita
Voi riuscite a farla, vero?
ita
Tu riesci a farla, vero?
ita
Puoi farlo, vero?
ita
Riuscite a farla, vero?
ita
Tu puoi farlo, vero?
ita
Riuscite a farlo, vero?
ita
Lei può farlo, vero?
ita
Voi potete farlo, vero?
ita
Puoi farla, vero?
ita
Lei può farla, vero?
ita
Riesci a farla, vero?
ita
Lei riesce a farla, vero?
ita
Potete farla, vero?
ita
Può farlo, vero?
ita
Tu riesci a farlo, vero?
ita
Potete farlo, vero?
ita
Lei riesce a farlo, vero?
ita
Voi riuscite a farlo, vero?
ita
Tu puoi farla, vero?
ita
Riesci a farlo, vero?
ita
Può farla, vero?
nld
U kunt het, nietwaar?
por
Você consegue fazê-lo, não consegue?
por
Você consegue fazer, não é?
rus
Ты же можешь это сделать, да?
spa
Puedes hacerlo, ¿no?
spa
Podéis hacerlo, ¿verdad?
spa
Puedes hacerlo, ¿verdad?
tgl
Kaya mo, hindi ba?
ukr
Ти можеш це зробити, так?
ukr
Ти можеш це виконати, чи не так?