CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
You
NP
hate
(S[dcl]\NP)/(S[to]\NP)
to
(S[to]\NP)/(S[b]\NP)
lose
S[b]\NP
,
,
do
(S[b]\NP)/NP
n't
(S\NP)\(S\NP)
(S[b]\NP)/NP
<
1
×
you
NP
?
.
NP
.
S[b]\NP
>
0
(S[b]\NP)\(S[b]\NP)
∨
S[b]\NP
<
0
S[to]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="You" data-from="0" data-to="3" data-cat="NP"> <tr><td class="token">You</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="hate" data-from="4" data-to="8" data-cat="(S[dcl]\NP)/(S[to]\NP)"> <tr><td class="token">hate</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="9" data-to="11" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="lose" data-from="12" data-to="16" data-cat="S[b]\NP"> <tr><td class="token">lose</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[b]\NP)\(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="," data-from="16" data-to="17" data-cat=","> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">,</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[b]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="do" data-from="18" data-to="20" data-cat="(S[b]\NP)/NP"> <tr><td class="token">do</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="n't" data-from="20" data-to="23" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">n't</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/NP</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="you" data-from="24" data-to="27" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="?" data-from="27" data-to="28" data-cat="."> <tr><td class="token">?</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)\(S[b]\NP)</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{You}{\catNP}{} \& \lexnode*{idm23}{hate}{(\catS[dcl]\?\catNP)/(\catS[to]\?\catNP)}{} \& \lexnode*{idm44}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm65}{lose}{\catS[b]\?\catNP}{} \& \lexnode*{idm86}{,}{\cat,}{} \& \lexnode*{idm110}{do}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm122}{n't}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm141}{you}{\catNP}{} \& \lexnode*{idm149}{?}{\cat.}{} \\ }; \binnode*{idm101}{idm110-cat}{idm122-cat}{\BXC{1}}{(\catS[b]\?\catNP)/\catNP}{} \binnode*{idm136}{idm141-cat}{idm149-cat}{.}{\catNP}{} \binnode*{idm94}{idm101}{idm136}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm75}{idm86-cat}{idm94}{\wedge}{(\catS[b]\?\catNP)\?(\catS[b]\?\catNP)}{} \binnode*{idm58}{idm65-cat}{idm75}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm37}{idm44-cat}{idm58}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm16}{idm23-cat}{idm37}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
ita
Odi perdere, vero?
ita
Odiate perdere, vero?
ita
Odia perdere, vero?
por
As senhoras odeiam perder, não é?
por
Detestais perder, não é mesmo?
por
Detestam perder, não é verdade?
por
Vocês odeiam perder, não é?
por
Você odeia perder, não é?
por
Você detesta perder, não detesta?
por
O senhor odeia perder, não é?
por
Odeias perder, não é?
por
Você detesta perder, não é?
por
A senhora detesta perder, não é verdade?
por
Tu detestas perder, não é?
por
Odiais perder, não é verdade?
por
Os senhores detestam perder, não é mesmo?
rus
Вы ненавидите проигрывать, не так ли?
rus
Ты ненавидишь проигрывать, не так ли?