CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
You
NP
have
(S[dcl]\NP)/(S[pt]\NP)
made
(S[pt]\NP)/NP
the
NP/N
very
(N/N)/(N/N)
same
N/N
N/N
>
0
mistake
N
N
>
0
NP
>
0
S[pt]\NP
>
0
again
(S\NP)\(S\NP)
.
.
(S\NP)\(S\NP)
.
S[pt]\NP
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="You" data-from="0" data-to="3" data-cat="NP"> <tr><td class="token">You</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="have" data-from="4" data-to="8" data-cat="(S[dcl]\NP)/(S[pt]\NP)"> <tr><td class="token">have</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[pt]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[pt]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[pt]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="made" data-from="9" data-to="13" data-cat="(S[pt]\NP)/NP"> <tr><td class="token">made</td></tr> <tr><td class="cat" tabindex="0">(S[pt]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="the" data-from="14" data-to="17" data-cat="NP/N"> <tr><td class="token">the</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="N/N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="very" data-from="18" data-to="22" data-cat="(N/N)/(N/N)"> <tr><td class="token">very</td></tr> <tr><td class="cat" tabindex="0">(N/N)/(N/N)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="same" data-from="23" data-to="27" data-cat="N/N"> <tr><td class="token">same</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N/N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="mistake" data-from="28" data-to="35" data-cat="N"> <tr><td class="token">mistake</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[pt]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="again" data-from="36" data-to="41" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">again</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="41" data-to="42" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[pt]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{You}{\catNP}{} \& \lexnode*{idm23}{have}{(\catS[dcl]\?\catNP)/(\catS[pt]\?\catNP)}{} \& \lexnode*{idm51}{made}{(\catS[pt]\?\catNP)/\catNP}{} \& \lexnode*{idm68}{the}{\catNP/\catN}{} \& \lexnode*{idm90}{very}{(\catN/\catN)/(\catN/\catN)}{} \& \lexnode*{idm104}{same}{\catN/\catN}{} \& \lexnode*{idm114}{mistake}{\catN}{} \& \lexnode*{idm133}{again}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm147}{.}{\cat.}{} \\ }; \binnode*{idm83}{idm90-cat}{idm104-cat}{\FC{0}}{\catN/\catN}{} \binnode*{idm78}{idm83}{idm114-cat}{\FC{0}}{\catN}{} \binnode*{idm63}{idm68-cat}{idm78}{\FC{0}}{\catNP}{} \binnode*{idm44}{idm51-cat}{idm63}{\FC{0}}{\catS[pt]\?\catNP}{} \binnode*{idm122}{idm133-cat}{idm147-cat}{.}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm37}{idm44}{idm122}{\BC{0}}{\catS[pt]\?\catNP}{} \binnode*{idm16}{idm23-cat}{idm37}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
ell
Ξανάεκανες το ίδιο λάθος.
ell
Έκανες ξανά το ίδιο λάθος.
fra
Vous avez exactement refait la même erreur.
fra
Tu as de nouveau commis exactement la même erreur.
nld
Je hebt weer dezelfde fout gemaakt.
por
Você cometeu o mesmo erro.
rus
Ты снова сделал ту же самую ошибку.
rus
Ты повторил ту же ошибку.
spa
Has vuelto a cometer exactamente el mismo error.
spa
Has cometido el mismo error otra vez.
ukr
Ти знов зробив таку ж помилку.