CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
You
NP
will
(S[dcl]\NP)/(S[b]\NP)
need
(S[b]\NP)/NP
much
(N/N)/(N/N)
more
N/N
N/N
>
0
money
N
than
(N\N)/S[dcl]
you
NP
do
S[dcl]\NP
now
(S\NP)\(S\NP)
S[dcl]\NP
<
0
.
.
S[dcl]\NP
.
S[dcl]
<
0
N\N
>
0
N
<
0
N
>
0
NP
*
S[b]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="You" data-from="0" data-to="3" data-cat="NP"> <tr><td class="token">You</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="will" data-from="4" data-to="8" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">will</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="need" data-from="9" data-to="13" data-cat="(S[b]\NP)/NP"> <tr><td class="token">need</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="N/N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="much" data-from="14" data-to="18" data-cat="(N/N)/(N/N)"> <tr><td class="token">much</td></tr> <tr><td class="cat" tabindex="0">(N/N)/(N/N)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="more" data-from="19" data-to="23" data-cat="N/N"> <tr><td class="token">more</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N/N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="money" data-from="24" data-to="29" data-cat="N"> <tr><td class="token">money</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N\N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="than" data-from="30" data-to="34" data-cat="(N\N)/S[dcl]"> <tr><td class="token">than</td></tr> <tr><td class="cat" tabindex="0">(N\N)/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="you" data-from="35" data-to="38" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="do" data-from="39" data-to="41" data-cat="S[dcl]\NP"> <tr><td class="token">do</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="now" data-from="42" data-to="45" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">now</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="45" data-to="46" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{You}{\catNP}{} \& \lexnode*{idm23}{will}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm44}{need}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm71}{much}{(\catN/\catN)/(\catN/\catN)}{} \& \lexnode*{idm85}{more}{\catN/\catN}{} \& \lexnode*{idm100}{money}{\catN}{} \& \lexnode*{idm115}{than}{(\catN\?\catN)/\catS[dcl]}{} \& \lexnode*{idm132}{you}{\catNP}{} \& \lexnode*{idm154}{do}{\catS[dcl]\?\catNP}{} \& \lexnode*{idm164}{now}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm178}{.}{\cat.}{} \\ }; \binnode*{idm64}{idm71-cat}{idm85-cat}{\FC{0}}{\catN/\catN}{} \binnode*{idm147}{idm154-cat}{idm164-cat}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm140}{idm147}{idm178-cat}{.}{\catS[dcl]\?\catNP}{} \binnode*{idm127}{idm132-cat}{idm140}{\BC{0}}{\catS[dcl]}{} \binnode*{idm108}{idm115-cat}{idm127}{\FC{0}}{\catN\?\catN}{} \binnode*{idm95}{idm100-cat}{idm108}{\BC{0}}{\catN}{} \binnode*{idm59}{idm64}{idm95}{\FC{0}}{\catN}{} \unnode*{idm56}{idm59}{*}{\catNP}{} \binnode*{idm37}{idm44-cat}{idm56}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm16}{idm23-cat}{idm37}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Du wirst sehr viel mehr Geld brauchen als jetzt.
fra
Tu auras besoin de beaucoup plus d'argent qu'aujourd'hui.
por
Você vai precisar de muito mais dinheiro do que agora.
por
Você precisará de muito mais dinheiro do que agora.
spa
Necesitarás mucho más dinero de lo que necesitas ahora.