CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Je
S[dcl]/NP
n'
NP/N
aime
(S[ng]\NP)/NP
pas
N/N
apprendre
N/N
les
N
N
>
0
N
>
0
NP\(NP/N)
T
<
(S[ng]\NP)\(NP/N)
>
1
×
S[ng]\NP
<
0
S[dcl]/S[dcl]
*
verbes
NP/N
irréguliers
N
NP
>
0
S[dcl]\(S[dcl]/NP)
T
<
S[dcl]\(S[dcl]/NP)
>
1
×
S[dcl]
<
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Je" data-from="0" data-to="2" data-cat="S[dcl]/NP"> <tr><td class="token">Je</td></tr> <tr><td class="cat" tabindex="0">S[dcl]/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\(S[dcl]/NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="S[dcl]/S[dcl]"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="S[ng]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="n'" data-from="3" data-to="5" data-cat="NP/N"> <tr><td class="token">n'</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[ng]\NP)\(NP/N)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="aime" data-from="5" data-to="9" data-cat="(S[ng]\NP)/NP"> <tr><td class="token">aime</td></tr> <tr><td class="cat" tabindex="0">(S[ng]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP\(NP/N)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="pas" data-from="10" data-to="13" data-cat="N/N"> <tr><td class="token">pas</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="apprendre" data-from="14" data-to="23" data-cat="N/N"> <tr><td class="token">apprendre</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="les" data-from="24" data-to="27" data-cat="N"> <tr><td class="token">les</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP\(NP/N)</div> <div class="rule" title="Backward Type Raising"> T <sup><</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[ng]\NP)\(NP/N)</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[ng]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/S[dcl]</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="S[dcl]\(S[dcl]/NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="verbes" data-from="28" data-to="34" data-cat="NP/N"> <tr><td class="token">verbes</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="irréguliers" data-from="35" data-to="46" data-cat="N"> <tr><td class="token">irréguliers</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\(S[dcl]/NP)</div> <div class="rule" title="Backward Type Raising"> T <sup><</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\(S[dcl]/NP)</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="46" data-to="47" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{Je}{\catS[dcl]/\catNP}{} \& \lexnode*{idm44}{n'}{\catNP/\catN}{} \& \lexnode*{idm65}{aime}{(\catS[ng]\?\catNP)/\catNP}{} \& \lexnode*{idm89}{pas}{\catN/\catN}{} \& \lexnode*{idm104}{apprendre}{\catN/\catN}{} \& \lexnode*{idm114}{les}{\catN}{} \& \lexnode*{idm134}{verbes}{\catNP/\catN}{} \& \lexnode*{idm144}{irréguliers}{\catN}{} \& \lexnode*{idm152}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \binnode*{idm99}{idm104-cat}{idm114-cat}{\FC{0}}{\catN}{} \binnode*{idm84}{idm89-cat}{idm99}{\FC{0}}{\catN}{} \unnode*{idm77}{idm84}{*}{\catNP\?(\catNP/\catN)}{} \binnode*{idm54}{idm65-cat}{idm77}{\FXC{1}}{(\catS[ng]\?\catNP)\?(\catNP/\catN)}{} \binnode*{idm37}{idm44-cat}{idm54}{\BC{0}}{\catS[ng]\?\catNP}{} \unnode*{idm32}{idm37}{*}{\catS[dcl]/\catS[dcl]}{} \binnode*{idm129}{idm134-cat}{idm144-cat}{\FC{0}}{\catNP}{} \unnode*{idm122}{idm129}{*}{\catS[dcl]\?(\catS[dcl]/\catNP)}{} \binnode*{idm23}{idm32}{idm122}{\FXC{1}}{\catS[dcl]\?(\catS[dcl]/\catNP)}{} \binnode*{idm8}{idm13-cat}{idm23}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm152-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich lerne nicht gerne unregelmäßige Verben.
eng
I don't like learning irregular verbs.
ita
Non mi piace imparare i verbi irregolari.
nld
Ik hou niet van onregelmatige werkwoorden leren.
por
Eu não gosto de estudar verbos irregulares.
rus
Не люблю учить неправильные глаголы.
rus
Я не люблю учить неправильные глаголы.
spa
No me gusta aprender los verbos irregulares.
ukr
Я не люблю вчити неправильні дієслова.