CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Je
NP
ne
NP/N
sais
((S[dcl]\NP)/NP)\NP
((S[dcl]\NP)/NP)/N
<
1
×
pas
N
(S[dcl]\NP)/NP
>
0
ce
S[dcl]\S[dcl]
(S[dcl]\NP)/NP
<
n
que
(S[dcl]\NP)/(S[dcl]\NP)
c’
NP/N
est
N
NP
>
0
(S[dcl]\NP)\((S[dcl]\NP)/NP)
T
<
(S[dcl]\NP)\((S[dcl]\NP)/NP)
>
1
×
S[dcl]\NP
<
0
S[dcl]
<
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Je" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">Je</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="((S[dcl]\NP)/NP)/N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="ne" data-from="3" data-to="5" data-cat="NP/N"> <tr><td class="token">ne</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="sais" data-from="6" data-to="10" data-cat="((S[dcl]\NP)/NP)\NP"> <tr><td class="token">sais</td></tr> <tr><td class="cat" tabindex="0">((S[dcl]\NP)/NP)\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">((S[dcl]\NP)/NP)/N</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="pas" data-from="11" data-to="14" data-cat="N"> <tr><td class="token">pas</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="ce" data-from="15" data-to="17" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">ce</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/NP</div> <div class="rule" title="Backward Composition">< <sup><i>n</i></sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)\((S[dcl]\NP)/NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="que" data-from="18" data-to="21" data-cat="(S[dcl]\NP)/(S[dcl]\NP)"> <tr><td class="token">que</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[dcl]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="(S[dcl]\NP)\((S[dcl]\NP)/NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="c’" data-from="22" data-to="24" data-cat="NP/N"> <tr><td class="token">c’</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="est" data-from="24" data-to="27" data-cat="N"> <tr><td class="token">est</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)\((S[dcl]\NP)/NP)</div> <div class="rule" title="Backward Type Raising"> T <sup><</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)\((S[dcl]\NP)/NP)</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="27" data-to="28" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{Je}{\catNP}{} \& \lexnode*{idm57}{ne}{\catNP/\catN}{} \& \lexnode*{idm67}{sais}{((\catS[dcl]\?\catNP)/\catNP)\?\catNP}{} \& \lexnode*{idm81}{pas}{\catN}{} \& \lexnode*{idm89}{ce}{\catS[dcl]\?\catS[dcl]}{} \& \lexnode*{idm112}{que}{(\catS[dcl]\?\catNP)/(\catS[dcl]\?\catNP)}{} \& \lexnode*{idm142}{c’}{\catNP/\catN}{} \& \lexnode*{idm152}{est}{\catN}{} \& \lexnode*{idm160}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \binnode*{idm46}{idm57-cat}{idm67-cat}{\BXC{1}}{((\catS[dcl]\?\catNP)/\catNP)/\catN}{} \binnode*{idm37}{idm46}{idm81-cat}{\FC{0}}{(\catS[dcl]\?\catNP)/\catNP}{} \binnode*{idm28}{idm37}{idm89-cat}{\BC{n}}{(\catS[dcl]\?\catNP)/\catNP}{} \binnode*{idm137}{idm142-cat}{idm152-cat}{\FC{0}}{\catNP}{} \unnode*{idm126}{idm137}{*}{(\catS[dcl]\?\catNP)\?((\catS[dcl]\?\catNP)/\catNP)}{} \binnode*{idm99}{idm112-cat}{idm126}{\FXC{1}}{(\catS[dcl]\?\catNP)\?((\catS[dcl]\?\catNP)/\catNP)}{} \binnode*{idm21}{idm28}{idm99}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm160-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich weiß nicht, was das ist.
eng
I don't know what that is.
eng
I don't know what it is.
fra
Je ne sais pas ce que c'est.
lat
Nescio quid sit.
nld
Ik weet niet wat dat is.
por
Eu não sei o que é isso.
rus
Я не знаю, что это такое.
rus
Я не знаю, что это.
spa
No sé qué es eso.
spa
No sé lo que es.
ukr
Я не знаю, що це.