CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Parlons
NP/N
de
N/N
ce
N
N
>
0
qui
N/N
s'
(S[ng]\NP)/NP
est
N
NP
*
S[ng]\NP
>
0
N\N
*
N\N
>
1
×
N
<
0
NP
>
0
passé
S[dcl]\NP
S[dcl]
<
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Parlons" data-from="0" data-to="7" data-cat="NP/N"> <tr><td class="token">Parlons</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="de" data-from="8" data-to="10" data-cat="N/N"> <tr><td class="token">de</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="ce" data-from="11" data-to="13" data-cat="N"> <tr><td class="token">ce</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N\N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="qui" data-from="14" data-to="17" data-cat="N/N"> <tr><td class="token">qui</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="N\N"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="S[ng]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="s'" data-from="18" data-to="20" data-cat="(S[ng]\NP)/NP"> <tr><td class="token">s'</td></tr> <tr><td class="cat" tabindex="0">(S[ng]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="est" data-from="20" data-to="23" data-cat="N"> <tr><td class="token">est</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[ng]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="passé" data-from="24" data-to="29" data-cat="S[dcl]\NP"> <tr><td class="token">passé</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="29" data-to="30" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm18}{Parlons}{\catNP/\catN}{} \& \lexnode*{idm38}{de}{\catN/\catN}{} \& \lexnode*{idm48}{ce}{\catN}{} \& \lexnode*{idm63}{qui}{\catN/\catN}{} \& \lexnode*{idm85}{s'}{(\catS[ng]\?\catNP)/\catNP}{} \& \lexnode*{idm100}{est}{\catN}{} \& \lexnode*{idm108}{passé}{\catS[dcl]\?\catNP}{} \& \lexnode*{idm118}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \binnode*{idm33}{idm38-cat}{idm48-cat}{\FC{0}}{\catN}{} \unnode*{idm97}{idm100-cat}{*}{\catNP}{} \binnode*{idm78}{idm85-cat}{idm97}{\FC{0}}{\catS[ng]\?\catNP}{} \unnode*{idm73}{idm78}{*}{\catN\?\catN}{} \binnode*{idm56}{idm63-cat}{idm73}{\FXC{1}}{\catN\?\catN}{} \binnode*{idm28}{idm33}{idm56}{\BC{0}}{\catN}{} \binnode*{idm13}{idm18-cat}{idm28}{\FC{0}}{\catNP}{} \binnode*{idm8}{idm13}{idm108-cat}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm118-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
eng
Let's talk about what happened.
rus
Давайте поговорим о том, что случилось.
rus
Давай поговорим о том, что случилось.
rus
Поговорим о случившемся.
rus
Давай поговорим о том, что произошло.
rus
Давай поговорим о случившемся.
rus
Поговорим о том, что случилось.
rus
Поговорим о том, что произошло.
rus
Давайте поговорим о случившемся.
rus
Давайте поговорим о том, что произошло.
ukr
Поговорімо про те, що трапилося.
ukr
Поговорімо про те, що сталося.