CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Mi
NP
ci
NP
vorrebbe
((S[dcl]\NP)/NP)\NP
(S[dcl]\NP)/NP
<
0
una
NP/N
vita
N/(S[to]\NP)
per
(S[to]\NP)/(S[b]\NP)
spiegare
(S[b]\NP)/NP
tutto
NP
S[b]\NP
>
0
S[to]\NP
>
0
N
>
0
NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Mi" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">Mi</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="ci" data-from="3" data-to="5" data-cat="NP"> <tr><td class="token">ci</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="vorrebbe" data-from="6" data-to="14" data-cat="((S[dcl]\NP)/NP)\NP"> <tr><td class="token">vorrebbe</td></tr> <tr><td class="cat" tabindex="0">((S[dcl]\NP)/NP)\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="una" data-from="15" data-to="18" data-cat="NP/N"> <tr><td class="token">una</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="vita" data-from="19" data-to="23" data-cat="N/(S[to]\NP)"> <tr><td class="token">vita</td></tr> <tr><td class="cat" tabindex="0">N/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="per" data-from="24" data-to="27" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">per</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="spiegare" data-from="28" data-to="36" data-cat="(S[b]\NP)/NP"> <tr><td class="token">spiegare</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="tutto" data-from="37" data-to="42" data-cat="NP"> <tr><td class="token">tutto</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="42" data-to="43" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{Mi}{\catNP}{} \& \lexnode*{idm37}{ci}{\catNP}{} \& \lexnode*{idm45}{vorrebbe}{((\catS[dcl]\?\catNP)/\catNP)\?\catNP}{} \& \lexnode*{idm64}{una}{\catNP/\catN}{} \& \lexnode*{idm79}{vita}{\catN/(\catS[to]\?\catNP)}{} \& \lexnode*{idm98}{per}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm119}{spiegare}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm131}{tutto}{\catNP}{} \& \lexnode*{idm139}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \binnode*{idm28}{idm37-cat}{idm45-cat}{\BC{0}}{(\catS[dcl]\?\catNP)/\catNP}{} \binnode*{idm112}{idm119-cat}{idm131-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm91}{idm98-cat}{idm112}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm74}{idm79-cat}{idm91}{\FC{0}}{\catN}{} \binnode*{idm59}{idm64-cat}{idm74}{\FC{0}}{\catNP}{} \binnode*{idm21}{idm28}{idm59}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm139-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Um alles zu erklären würde ich ewig brauchen.
deu
Es würde ewig dauern, alles zu erklären.
eng
It would take forever for me to explain everything.
fra
Ça me prendrait l'éternité pour tout expliquer.
nld
Ik heb een eeuwigheid nodig om alles uit te leggen.
nld
Ik zou een eeuwigheid bezig zijn om alles uit te leggen.
por
Eu levaria uma eternidade para explicar tudo.
rus
Мне потребуется вечность, чтобы всё объяснить.
rus
Мне потребовалась бы вечность, чтобы всё объяснить.
spa
Me tomaría una eternidad explicarte todo.
ukr
Мені знадобиться вічність, щоб все пояснити.