CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Het
NP/N
nummer
N/PP
van
PP/NP
mijn
NP/(N/PP)
kamer
N/PP
NP
>
0
PP
>
0
N
>
0
NP
>
0
is
(S[dcl]\NP)/(S[adj]\NP)
5
S[adj]\NP
S[dcl]\NP
>
0
S[dcl]
<
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Het" data-from="0" data-to="3" data-cat="NP/N"> <tr><td class="token">Het</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="nummer" data-from="4" data-to="10" data-cat="N/PP"> <tr><td class="token">nummer</td></tr> <tr><td class="cat" tabindex="0">N/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="van" data-from="11" data-to="14" data-cat="PP/NP"> <tr><td class="token">van</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="mijn" data-from="15" data-to="19" data-cat="NP/(N/PP)"> <tr><td class="token">mijn</td></tr> <tr><td class="cat" tabindex="0">NP/(N/PP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="kamer" data-from="20" data-to="25" data-cat="N/PP"> <tr><td class="token">kamer</td></tr> <tr><td class="cat" tabindex="0">N/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="is" data-from="26" data-to="28" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr><td class="token">is</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="5" data-from="29" data-to="30" data-cat="S[adj]\NP"> <tr><td class="token">5</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="30" data-to="31" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm18}{Het}{\catNP/\catN}{} \& \lexnode*{idm33}{nummer}{\catN/\catPP}{} \& \lexnode*{idm48}{van}{\catPP/\catNP}{} \& \lexnode*{idm63}{mijn}{\catNP/(\catN/\catPP)}{} \& \lexnode*{idm75}{kamer}{\catN/\catPP}{} \& \lexnode*{idm92}{is}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm106}{5}{\catS[adj]\?\catNP}{} \& \lexnode*{idm116}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \binnode*{idm58}{idm63-cat}{idm75-cat}{\FC{0}}{\catNP}{} \binnode*{idm43}{idm48-cat}{idm58}{\FC{0}}{\catPP}{} \binnode*{idm28}{idm33-cat}{idm43}{\FC{0}}{\catN}{} \binnode*{idm13}{idm18-cat}{idm28}{\FC{0}}{\catNP}{} \binnode*{idm85}{idm92-cat}{idm106-cat}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13}{idm85}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm116-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich habe die Zimmernummer 5.
eng
My room number is 5.
fra
Le numéro de ma chambre est le 5.
fra
Mon numéro de chambre est le 5.
ita
Il numero della mia stanza è il 5.
ita
Il mio numero di stanza è il 5.
ita
Il numero della mia camera è il 5.
nld
Ik heb kamer 5.
por
O meu número de quarto é 5.
rus
Номер моей комнаты – 5.
spa
Mi número de habitación es el 5.