CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Previous
Next
Parse
auto
visual
HTML
LaTeX
Ik
NP
denk
(S[dcl]\NP)/S[em]
dat
S[em]/S[dcl]
ze
NP
dat
NP
expres
(S[dcl]\NP)/(S[dcl]\NP)
doen
(S[dcl]\NP)\NP
(S[dcl]\NP)\NP
>
1
×
S[dcl]\NP
<
0
S[dcl]
<
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
S[em]
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Ik" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">Ik</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="denk" data-from="3" data-to="7" data-cat="(S[dcl]\NP)/S[em]"> <tr><td class="token">denk</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/S[em]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[em]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="dat" data-from="8" data-to="11" data-cat="S[em]/S[dcl]"> <tr><td class="token">dat</td></tr> <tr><td class="cat" tabindex="0">S[em]/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="ze" data-from="12" data-to="14" data-cat="NP"> <tr><td class="token">ze</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="dat" data-from="15" data-to="18" data-cat="NP"> <tr><td class="token">dat</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="expres" data-from="19" data-to="25" data-cat="(S[dcl]\NP)/(S[dcl]\NP)"> <tr><td class="token">expres</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[dcl]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="doen" data-from="26" data-to="30" data-cat="(S[dcl]\NP)\NP"> <tr><td class="token">doen</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)\NP</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="30" data-to="31" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[em]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{Ik}{\catNP}{} \& \lexnode*{idm23}{denk}{(\catS[dcl]\?\catNP)/\catS[em]}{} \& \lexnode*{idm40}{dat}{\catS[em]/\catS[dcl]}{} \& \lexnode*{idm60}{ze}{\catNP}{} \& \lexnode*{idm75}{dat}{\catNP}{} \& \lexnode*{idm92}{expres}{(\catS[dcl]\?\catNP)/(\catS[dcl]\?\catNP)}{} \& \lexnode*{idm106}{doen}{(\catS[dcl]\?\catNP)\?\catNP}{} \& \lexnode*{idm118}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \binnode*{idm83}{idm92-cat}{idm106-cat}{\FXC{1}}{(\catS[dcl]\?\catNP)\?\catNP}{} \binnode*{idm68}{idm75-cat}{idm83}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm55}{idm60-cat}{idm68}{\BC{0}}{\catS[dcl]}{} \binnode*{idm50}{idm55}{idm118-cat}{\BC{0}}{\catS[dcl]}{} \binnode*{idm35}{idm40-cat}{idm50}{\FC{0}}{\catS[em]}{} \binnode*{idm16}{idm23-cat}{idm35}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich glaube, das machen die mit Absicht.
eng
I think they do that on purpose.
fra
Je pense qu'elles le font exprès.
fra
Je pense qu'ils le font exprès.