CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Ik
NP
hoop
(S[dcl]\NP)/S[dcl]
je
NP
snel
(S[dcl]\NP)/(S[to]\NP)
te
(S[to]\NP)/(S[b]\NP)
zien
S[b]\NP
S[to]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Ik" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">Ik</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="hoop" data-from="3" data-to="7" data-cat="(S[dcl]\NP)/S[dcl]"> <tr><td class="token">hoop</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="je" data-from="8" data-to="10" data-cat="NP"> <tr><td class="token">je</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="snel" data-from="11" data-to="15" data-cat="(S[dcl]\NP)/(S[to]\NP)"> <tr><td class="token">snel</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="te" data-from="16" data-to="18" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">te</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="zien" data-from="19" data-to="23" data-cat="S[b]\NP"> <tr><td class="token">zien</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="23" data-to="24" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{Ik}{\catNP}{} \& \lexnode*{idm23}{hoop}{(\catS[dcl]\?\catNP)/\catS[dcl]}{} \& \lexnode*{idm45}{je}{\catNP}{} \& \lexnode*{idm60}{snel}{(\catS[dcl]\?\catNP)/(\catS[to]\?\catNP)}{} \& \lexnode*{idm81}{te}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm95}{zien}{\catS[b]\?\catNP}{} \& \lexnode*{idm105}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \binnode*{idm74}{idm81-cat}{idm95-cat}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm53}{idm60-cat}{idm74}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm40}{idm45-cat}{idm53}{\BC{0}}{\catS[dcl]}{} \binnode*{idm35}{idm40}{idm105-cat}{\BC{0}}{\catS[dcl]}{} \binnode*{idm16}{idm23-cat}{idm35}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich hoffe, wir sehen uns bald!
deu
Ich hoffe, dich bald zu sehen.
eng
I hope to see you soon.
eng
I hope I can see you soon.
fra
J'espère te voir vite.
fra
J'espère te voir bientôt.
ita
Spero di vedervi presto.
ita
Spero di vederti presto.
por
Espero te ver em breve.
rus
Я надеюсь скоро тебя увидеть.
rus
Надеюсь, что мы скоро увидимся.
rus
Надеюсь, скоро увидимся.
spa
Espero verte pronto.