CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Ik
NP
moet
(S[dcl]\NP)/(S[b]\NP)
nu
(S[b]\NP)/(S[b]\NP)
gaan
S[b]\NP
S[b]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Ik" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">Ik</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="moet" data-from="3" data-to="7" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">moet</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="nu" data-from="8" data-to="10" data-cat="(S[b]\NP)/(S[b]\NP)"> <tr><td class="token">nu</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="gaan" data-from="11" data-to="15" data-cat="S[b]\NP"> <tr><td class="token">gaan</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="15" data-to="16" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{Ik}{\catNP}{} \& \lexnode*{idm28}{moet}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm49}{nu}{(\catS[b]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm63}{gaan}{\catS[b]\?\catNP}{} \& \lexnode*{idm73}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \binnode*{idm42}{idm49-cat}{idm63-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm21}{idm28-cat}{idm42}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm73-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich muss jetzt gehen.
deu
Ich muss jetzt los.
eng
I have to go now.
eng
I must go now.
eng
I have to leave now.
eng
I have got to go now.
eng
Got to go now.
fra
Je dois partir maintenant.
fra
Il faut que j'y aille maintenant.
ukr
Мені вже час іти.
ukr
Я вже маю йти.
ukr
Мені вже треба йти.
ukr
Мушу вже йти.