CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Ok
N
,
NP\NP
goed
S[adj]\NP
dan
(S[adj]\NP)\(S[adj]\NP)
S[adj]\NP
<
0
S[adj]\NP
<
1
N\N
*
N
<
0
NP
*
!
NP\NP
NP
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Ok" data-from="0" data-to="2" data-cat="N"> <tr><td class="token">Ok</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="N\N"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="," data-from="2" data-to="3" data-cat="NP\NP"> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">NP\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="goed" data-from="4" data-to="8" data-cat="S[adj]\NP"> <tr><td class="token">goed</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="dan" data-from="9" data-to="12" data-cat="(S[adj]\NP)\(S[adj]\NP)"> <tr><td class="token">dan</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)\(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Backward Composition">< <sup>1</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="!" data-from="12" data-to="13" data-cat="NP\NP"> <tr><td class="token">!</td></tr> <tr><td class="cat" tabindex="0">NP\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm16}{Ok}{\catN}{} \& \lexnode*{idm36}{,}{\catNP\?\catNP}{} \& \lexnode*{idm53}{goed}{\catS[adj]\?\catNP}{} \& \lexnode*{idm63}{dan}{(\catS[adj]\?\catNP)\?(\catS[adj]\?\catNP)}{} \& \lexnode*{idm77}{!}{\catNP\?\catNP}{} \\ }; \binnode*{idm46}{idm53-cat}{idm63-cat}{\BC{0}}{\catS[adj]\?\catNP}{} \binnode*{idm29}{idm36-cat}{idm46}{\BC{1}}{\catS[adj]\?\catNP}{} \unnode*{idm24}{idm29}{*}{\catN\?\catN}{} \binnode*{idm11}{idm16-cat}{idm24}{\BC{0}}{\catN}{} \unnode*{idm8}{idm11}{*}{\catNP}{} \binnode*{idm3}{idm8}{idm77-cat}{\BC{0}}{\catNP}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Schön und gut.
deu
Na schön!
deu
In Ordnung.
deu
Okay.
deu
Na gut!
deu
Auch gut!
eng
Fair enough!
eng
Okey doke.
eng
Fair enough.
eng
Okay.
eng
All right.
eng
Okey-dokey.
eng
OK.
eng
Alright already!
fra
Dacodac.
fra
C'est entendu.
fra
Très bien.
fra
Bon, d'accord !
fra
D'ac.
fra
Fort bien !
fra
D'accord.
fra
D'accord OK.
fra
C'est d'accord.
fra
Ça roule.
fra
C'est bon.