CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Previous
Next
Parse
auto
visual
HTML
LaTeX
Wist
(S[q]/(S[b]\NP))/NP
je
NP
S[q]/(S[b]\NP)
>
0
dat
NP/N
mannen
N
die
(N\N)/(S[dcl]\NP)
regelmatig
(S[dcl]\NP)/NP
de
NP/N
pil
N
NP
>
0
S[dcl]\NP
>
0
N\N
>
0
N
<
0
N/(N\N)
T
>
NP/(N\N)
>
1
slikken
(S[b]\NP)/NP
niet
(S[adj]\NP)/(S[adj]\NP)
zwanger
S[adj]\NP
S[adj]\NP
>
0
N\N
*
NP\(NP/(N\N))
T
<
(S[b]\NP)\(NP/(N\N))
>
1
×
S[b]\NP
<
0
raken
(S[b]\NP)\(S[b]\NP)
S[b]\NP
<
0
S[q]
>
0
?
S[q]\S[q]
S[q]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[q]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[q]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[q]/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Wist" data-from="0" data-to="4" data-cat="(S[q]/(S[b]\NP))/NP"> <tr><td class="token">Wist</td></tr> <tr><td class="cat" tabindex="0">(S[q]/(S[b]\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="je" data-from="5" data-to="7" data-cat="NP"> <tr><td class="token">je</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[q]/(S[b]\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP/(N\N)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="dat" data-from="8" data-to="11" data-cat="NP/N"> <tr><td class="token">dat</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="N/(N\N)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="mannen" data-from="12" data-to="18" data-cat="N"> <tr><td class="token">mannen</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N\N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="die" data-from="19" data-to="22" data-cat="(N\N)/(S[dcl]\NP)"> <tr><td class="token">die</td></tr> <tr><td class="cat" tabindex="0">(N\N)/(S[dcl]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="regelmatig" data-from="23" data-to="33" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">regelmatig</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="de" data-from="34" data-to="36" data-cat="NP/N"> <tr><td class="token">de</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="pil" data-from="37" data-to="40" data-cat="N"> <tr><td class="token">pil</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">N/(N\N)</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP/(N\N)</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[b]\NP)\(NP/(N\N))"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="slikken" data-from="41" data-to="48" data-cat="(S[b]\NP)/NP"> <tr><td class="token">slikken</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP\(NP/(N\N))"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent unaryrule" data-cat="N\N"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="niet" data-from="49" data-to="53" data-cat="(S[adj]\NP)/(S[adj]\NP)"> <tr><td class="token">niet</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="zwanger" data-from="54" data-to="61" data-cat="S[adj]\NP"> <tr><td class="token">zwanger</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP\(NP/(N\N))</div> <div class="rule" title="Backward Type Raising"> T <sup><</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)\(NP/(N\N))</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="raken" data-from="62" data-to="67" data-cat="(S[b]\NP)\(S[b]\NP)"> <tr><td class="token">raken</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)\(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[q]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="?" data-from="67" data-to="68" data-cat="S[q]\S[q]"> <tr><td class="token">?</td></tr> <tr><td class="cat" tabindex="0">S[q]\S[q]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[q]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm22}{Wist}{(\catS[q]/(\catS[b]\?\catNP))/\catNP}{} \& \lexnode*{idm36}{je}{\catNP}{} \& \lexnode*{idm67}{dat}{\catNP/\catN}{} \& \lexnode*{idm89}{mannen}{\catN}{} \& \lexnode*{idm104}{die}{(\catN\?\catN)/(\catS[dcl]\?\catNP)}{} \& \lexnode*{idm125}{regelmatig}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm142}{de}{\catNP/\catN}{} \& \lexnode*{idm152}{pil}{\catN}{} \& \lexnode*{idm173}{slikken}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm206}{niet}{(\catS[adj]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm220}{zwanger}{\catS[adj]\?\catNP}{} \& \lexnode*{idm230}{raken}{(\catS[b]\?\catNP)\?(\catS[b]\?\catNP)}{} \& \lexnode*{idm244}{?}{\catS[q]\?\catS[q]}{} \\ }; \binnode*{idm13}{idm22-cat}{idm36-cat}{\FC{0}}{\catS[q]/(\catS[b]\?\catNP)}{} \binnode*{idm137}{idm142-cat}{idm152-cat}{\FC{0}}{\catNP}{} \binnode*{idm118}{idm125-cat}{idm137}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm97}{idm104-cat}{idm118}{\FC{0}}{\catN\?\catN}{} \binnode*{idm84}{idm89-cat}{idm97}{\BC{0}}{\catN}{} \unnode*{idm77}{idm84}{\FTR}{\catN/(\catN\?\catN)}{} \binnode*{idm58}{idm67-cat}{idm77}{\FC{1}}{\catNP/(\catN\?\catN)}{} \binnode*{idm199}{idm206-cat}{idm220-cat}{\FC{0}}{\catS[adj]\?\catNP}{} \unnode*{idm194}{idm199}{*}{\catN\?\catN}{} \unnode*{idm185}{idm194}{*}{\catNP\?(\catNP/(\catN\?\catN))}{} \binnode*{idm160}{idm173-cat}{idm185}{\FXC{1}}{(\catS[b]\?\catNP)\?(\catNP/(\catN\?\catN))}{} \binnode*{idm51}{idm58}{idm160}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm44}{idm51}{idm230-cat}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm8}{idm13}{idm44}{\FC{0}}{\catS[q]}{} \binnode*{idm3}{idm8}{idm244-cat}{\BC{0}}{\catS[q]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
eng
Did you know that men who regularly take the birth control pill don't get pregnant?
fra
Savais-tu que les hommes qui prennent régulièrement la pilule ne tombent pas enceints ?
fra
Est-ce que tu savais que les hommes qui prennent régulièrement la pilule ne tombent pas enceints ?
spa
¿Sabías que los hombres que toman regularmente la píldora anticonceptiva no se quedan embarazados?