CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Dime
NP
lo
NP
que
((S[dcl]\NP)\NP)/NP
comes
N
y
N/N
te
NP
S[dcl]/(S[dcl]\NP)
T
>
diré
(S[dcl]\NP)/NP
S[dcl]/NP
>
1
N\N
*
N\N
>
1
×
N
<
0
NP
*
(S[dcl]\NP)\NP
>
0
S[dcl]\NP
<
0
quién
((S[dcl]\NP)\(S[dcl]\NP))/NP
eres
N
NP
*
(S[dcl]\NP)\(S[dcl]\NP)
>
0
S[dcl]\NP
<
0
S[dcl]
<
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Dime" data-from="0" data-to="4" data-cat="NP"> <tr><td class="token">Dime</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="lo" data-from="5" data-to="7" data-cat="NP"> <tr><td class="token">lo</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="que" data-from="8" data-to="11" data-cat="((S[dcl]\NP)\NP)/NP"> <tr><td class="token">que</td></tr> <tr><td class="cat" tabindex="0">((S[dcl]\NP)\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="comes" data-from="12" data-to="17" data-cat="N"> <tr><td class="token">comes</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N\N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="y" data-from="18" data-to="19" data-cat="N/N"> <tr><td class="token">y</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="N\N"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="S[dcl]/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="S[dcl]/(S[dcl]\NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="te" data-from="20" data-to="22" data-cat="NP"> <tr><td class="token">te</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/(S[dcl]\NP)</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="diré" data-from="23" data-to="27" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">diré</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)\(S[dcl]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="quién" data-from="28" data-to="33" data-cat="((S[dcl]\NP)\(S[dcl]\NP))/NP"> <tr><td class="token">quién</td></tr> <tr><td class="cat" tabindex="0">((S[dcl]\NP)\(S[dcl]\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="eres" data-from="34" data-to="38" data-cat="N"> <tr><td class="token">eres</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)\(S[dcl]\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="38" data-to="39" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{Dime}{\catNP}{} \& \lexnode*{idm35}{lo}{\catNP}{} \& \lexnode*{idm52}{que}{((\catS[dcl]\?\catNP)\?\catNP)/\catNP}{} \& \lexnode*{idm74}{comes}{\catN}{} \& \lexnode*{idm89}{y}{\catN/\catN}{} \& \lexnode*{idm118}{te}{\catNP}{} \& \lexnode*{idm126}{diré}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm149}{quién}{((\catS[dcl]\?\catNP)\?(\catS[dcl]\?\catNP))/\catNP}{} \& \lexnode*{idm168}{eres}{\catN}{} \& \lexnode*{idm176}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \unnode*{idm111}{idm118-cat}{\FTR}{\catS[dcl]/(\catS[dcl]\?\catNP)}{} \binnode*{idm104}{idm111}{idm126-cat}{\FC{1}}{\catS[dcl]/\catNP}{} \unnode*{idm99}{idm104}{*}{\catN\?\catN}{} \binnode*{idm82}{idm89-cat}{idm99}{\FXC{1}}{\catN\?\catN}{} \binnode*{idm69}{idm74-cat}{idm82}{\BC{0}}{\catN}{} \unnode*{idm66}{idm69}{*}{\catNP}{} \binnode*{idm43}{idm52-cat}{idm66}{\FC{0}}{(\catS[dcl]\?\catNP)\?\catNP}{} \binnode*{idm28}{idm35-cat}{idm43}{\BC{0}}{\catS[dcl]\?\catNP}{} \unnode*{idm165}{idm168-cat}{*}{\catNP}{} \binnode*{idm138}{idm149-cat}{idm165}{\FC{0}}{(\catS[dcl]\?\catNP)\?(\catS[dcl]\?\catNP)}{} \binnode*{idm21}{idm28}{idm138}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm176-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Sage mir, was du isst, und ich sage dir, wer du bist.
eng
Tell me what you eat, I will tell you who you are.
rus
Скажи мне, что ты ешь, и я скажу тебе, кто ты.
spa
Dime qué comes, y yo te diré qué eres.