CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Ya
NP/NP
me
NP
NP
>
0
tengo
(S[dcl]\NP)/NP
que
S[adj]\NP
N/N
*
ir
N
N
>
0
NP
*
S[dcl]\NP
>
0
S[dcl]
<
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Ya" data-from="0" data-to="2" data-cat="NP/NP"> <tr><td class="token">Ya</td></tr> <tr><td class="cat" tabindex="0">NP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="me" data-from="3" data-to="5" data-cat="NP"> <tr><td class="token">me</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="tengo" data-from="6" data-to="11" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">tengo</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="N/N"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="que" data-from="12" data-to="15" data-cat="S[adj]\NP"> <tr><td class="token">que</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">N/N</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="ir" data-from="16" data-to="18" data-cat="N"> <tr><td class="token">ir</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="18" data-to="19" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm18}{Ya}{\catNP/\catNP}{} \& \lexnode*{idm28}{me}{\catNP}{} \& \lexnode*{idm43}{tengo}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm68}{que}{\catS[adj]\?\catNP}{} \& \lexnode*{idm78}{ir}{\catN}{} \& \lexnode*{idm86}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \binnode*{idm13}{idm18-cat}{idm28-cat}{\FC{0}}{\catNP}{} \unnode*{idm63}{idm68-cat}{*}{\catN/\catN}{} \binnode*{idm58}{idm63}{idm78-cat}{\FC{0}}{\catN}{} \unnode*{idm55}{idm58}{*}{\catNP}{} \binnode*{idm36}{idm43-cat}{idm55}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13}{idm36}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm86-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich muss nun weggehen.
deu
Ich muss jetzt gehen.
deu
Ich muss gehen.
deu
Ich muss jetzt los.
eng
I have to go now.
eng
I must go now.
eng
I must be going now.
eng
Well, I have to go now.
eng
I have to leave now.
eng
I've got to go now.
eng
I must be leaving now.
eng
I have got to go now.
eng
I must leave now.
fra
Je dois partir maintenant.
fra
Je dois y aller.
fra
Il faut que j'y aille maintenant.
ita
Devo partire adesso.
ita
Devo partire ora.
por
Tenho que partir agora.
por
Tenho que ir agora.
rus
Мне уже надо идти.
rus
Я должен сейчас уйти.
rus
Я должна сейчас уйти.
rus
Мне уже пора идти.
spa
Debo irme ahora.
spa
Me tengo que ir.
spa
Tengo que irme ahora.
spa
Ahora tengo que irme.
spa
Ahora me tengo que ir.
ukr
Мушу вже йти.